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I .  Phys. A Math. Gen. 27 (1994) 48594866. Printed in the UK 

Modified group-projector technique: subgroups and 
generators 

M Damnjanovitts and I MiloSeviEI 
t Faculty of Physics, The University. PO Box 550. 11001 Beograd. Serbia, Yugoslavia 
$ Faculty of Forestry. The University, Knem ViSeslava 1. ll000 Beograd, Serbia, Yugoslavia 

Reeeived IO September 1993 

Abstract. Instead of the usual procedure involving the family of group operators, only the 
projector of the identity representation is used to obtain the symmetry-adapted basis. For the 
product groups, this projector is factorized to the subgroups. So, the whole procedure is reduced 
to the eigenvalue problem for the o p e m r s  representing the generaton. Avoiding summation 
over the group, the method is suitable for computer implementations even for infinite groups. 
Some applications are discussed. 

1. Introduction 

One of the most important group-theoretical concepts in physics is the standard (or 
symmetry-adapted) basis (Elliot and Dawber 1979 section 5.3, Jansen and Boon 1967 ch llI) 
which enables us to simplify and sometimes completely solve the eigenproblem of operators 
commuting with a unitary representation of the symmetry group. Furthermore, such bases 
are unavoidable when selection rules are sought Wigner 1959 section 6.3, Messiah 1970 
appendix D) and, more generally, they provide the setup for the Wigner-Eckart theorem. 
To find these bases, group operators are essential. 

Let D(G) be a reducible unitary representation in the space 'H. The notion of reducibility 
refers to complex spaces until otherwise specified (Wigner 1959 section 3, Jansen and Boon 
1967 ch 2). The frequencies a, of the irreducible components D(+)(G) can be found by 
using the characters: a, = ( l / lG[ )E8  x@"*(g)x(g).  Then, D(G)  is decomposed into 
irreducible components in the form D ( G )  = $;=la,D(fi)(G) revealing the decomposition 
of 'H into the irreducible invariant subspaces: H = e;",=, @z'l X@t)s. By choosing an 
orthonormal sub-basis {IpLt,m)lm = 1,. . . , d,) (d, is the dimension of D@)(G)) in each 
of these subspaces, the standard basis in 'H is obtained. The action of the operators D ( G )  
in this basis is represented by 

i.e. by block-diagonal matrices with irreducible representations within the blocks. 
To obtain the standard basis when the matrices D p ( g )  of the irreducible representations 

are given, the family of group operators (Jansen and Boon 1967 section m.2.6.) 
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P j y ) ( D ,  G ) s ( d p / l G I )  E, D t ) * ( g ) D ( g )  has to be calculated. The orthogonality relations 
imply that P$‘)(D, G)P::’(D, G) = P?)(D, G)6,,6,,T and Pj?”(D, G) = P$)(D, G); 
thus, P f ) ( D ,  G) are the projectors. The algorithm to obtain the standard basis 
becomes: for each p the projector P$) (D,G)  is found, with a basis in the (ap- 
dimensional) range of this projector, say (Iptpl)ltp = 1. ... ,ap) ;  finally, the vectors 
(Ipf,m) = PmI ( D ,  G)Ipt,l)lm = 1,. . . , dp) form the standard sub-basis. In what follows, 
the group projector P/ i ) (D,  G) for the identity representation I ( G )  (Z(g) = 1) will be 
denoted by G(D). 

This general procedure may appear inconvenient to apply to some specific situations. 
Since group operators do not involve the whole irreducible representation but only a single 
matrix element, algebraic operations with them are only related to the structure of the 
group through the orthogonality relations. Furthermore, for groups with many elements, the 
summation can be complicated while for infinite groups the direct computer implementation 
of this technique seems impossible; e.g. the lie (MiloSeviC and DamnjanoviC 1993) and 
space groups (Altmann 1977) in polymer and crystal physics are infinite. 

The aim of th is  paper is to develop a method to avoid some of the mentioned difficulties. 
This method should be applicable whenever the described standard one is, i.e. for unitary 
representations of finite and discrete groups. In the next section, the theorems enabling 
us to reduce the construction of any group operator to the group projector of the identity 
representation are proved. Since it does not single out any matrix element, this projector 
manifestly reflects the group structure (section 3). being expressible through the projectors 
related to the subgroups. Using this, it is easy to substitute the summation over the group 
with an eigenproblem (section 4). Finally, besides some remarks on the applicability of the 
method, an example is given. 

M DamnjanoviC and I MiloSeviC 

def (P) 

2. Projections in the product space 

To begin with, the necessary group-theoretical results will be briefly developed. Let Q(G) 
and &(G) denote two unitary representations of G in the spaces ‘HI and ‘HZ (dl and dz 
being their dimensions). The corresponding decompositions into irreducible components 
are Dj(G) = fBpahD(J’)(G) (i = 1,Z). In the direct product of these representations 
Dl(G) 8 Dz(G), defined in the space ‘HI 0 ‘Hz, the identity representation Z(G) appears 
a, = ( l / IGI)E,x l (g)xz (g)  times (in fact, this is the intertwining number for Dl(G) 
and D;(G)). Since xi(g) = ai x @ ) ( g ) ,  the orthogonality of the irreducible characters 
gives a/ = E,, a:.:. (here, D(’ ’(G) denotes the complex conjugated representation of 
D@)(G)).  Note that a,  is the dimension of the subspace of the identity representation, i.e. of 
the range R of the group projector G(D1 8 4) = (l/IGI) E, Dl(g) Q Dl(g) .  Obviously, 
G(D(”’ @ D )  = PU)(D,  G) if &(G) = Do*)(G) is a onedimensional (irreducible) 
representation. 

L e t [ l i ; l ) [ i =  1, ..., dl]and ( lb j ) l j= 1, ..., d2) betheorthonormalbasesin‘Ht and 
‘Hz, respectively. Any vector I x )  from ‘HI Q ‘Hz, written as Ix) = &cxijli; I )  Q lbj), 

uniquely defines dl vectors in 7i2 through the partial scalar products: li; 2 ) 2 ( i ;  llx) = 
Ej aijlbj), i = 1, . . . , dl. The obtained couples li; 1) and li; 2) determine Ix) in the form 
I x )  = li; 1) Q li; 2). Note that the vectors li; 2) may be zero or linearly dependent. 
The main theorem can now be proposed. 

fi ., 
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Theorem 1. Let the vectors of the orthonormal basis { l i ;  1)li = 1, . . . , d l ]  in ' H I  transform 
according to Dl(g)li;  1) = r, Dl,i(g)lj;  1) and let Ix) = li; 1) @ li; 2)  be from 
R. Then the action of the operators Dz&) on the vectors l i ; 2 )  is Dz(g)li; 2 )  = 
E;:, DTji(g)Ij; 2). 

Since Dl(g )@Dz(g ) lx )  = [x), the proofconsists of the following sequence of equalities: 
Dz(g)l i ;2)  = 4 ( g ) ( i ;  I lx)  = Dz(g)( i ;  lI(Dl(g-') @ D z ( g - ' ) x f L l  Ik; I )  @ Ik; 2)) = 
Dz(g) ( i ;  llxtj=j Dijk(g-')lj; 1) @ (Dz(g-')lk; 2)) = CfLl D;,(g)lk; 2 ) .  

described with the help of the following theorem. 

Theorem 2. 
D I ( G )  and &(G) in 'HI and E?. Then an orthonormal basis in R is 

Theorem 1 offers an algorithm for the derivation of the standard basis. It will be 

Let { I p f i m ;  I ) ]  and { [p f :m;  Z ) ]  be the standard bases for the representations 

To prove this, it is sufficient to note that there are exactly E, ah..: of these vectors, 
which is also the dimension of R, and that all of them are invariant under D l ( g )  @ D&). 
They are orthonormal since so are components in 'HI  and 'Hz. 

The standard basis for the reducible representation Dz(G) = D(G)  can be found as 
follows. Let D@)(G)  be one of its irreducible components and (Ip*m)Im = 1, .  . . ,d,]  be 
the standard basis for the irreducible matrix representation D I ( G )  = D'l*)'(G). First, the 
projector G(D@)* @ D) is to be found. In its a,-dimensional range, any orthonormal basis 
{Iptl*)ltl* = 1, . . . ,al*) (fk. = 1 is superfluous, while t, = t i)  can be chosen as the basis of 
theorem 2. According to theorem 1, the partial scalar products Ipf,m) = (p*m I fitl*) are 
the standard vectors. To find the whole standard basis, the procedure has to be worked out 
for each irreducible component of D(G).  Thus, the procedure is reduced to the projectors 
G(D@)' @ D) only. In fact, since P i y ) ( D ,  G)  = (p*ilG(D(l*)' @ D ) l p * j )  (partial scalar 
product), G(D@Y@D) contains the same information as the whole set of the group operators 
P$)(D, G ) .  In this sense, the proposed procedure appears as a modification to the usual 
one; its advantages will stem from the fact that the projector G ( D )  reflects the structure of 
G as will be discussed in the following. 

3. Subgroups and their products 

The definition of the group projector G ( D )  can be easily generalized to any subset Y of G: 
Y(D) = ( l / [ Y l ) x g e y  D(g) .  Although these operators are not generally projectors, their 
properties enable us to reduce the calculation of G ( D )  to some relevant subsets. For further 
analysis it should be recalled that the group G is the product of its subgroups H and K ,  
G = H K ,  if each element g of G is a product g = hk of the elements h from H and k 
from K (Jansen and Boon 1967 section 1.6). The factors are not unique unless G is the 
weak direct product of H and K ,  i.e. unless the intersection subgroup L = H n K contains 
the identity element only: for any 1 E L the elements h' = hl-' E H and k' = ik also 
give g = h'k'. More generally, for any subgroup H of the group G ,  the left transversal 
Z = ( 2 0 , .  . . , zrzl-l} ( [Z l  = lGl/lH[) can be found: G = U,zrH.  If is the closure of Z, 
i.e. the minimal subgroup of G containing Z then G is the product G = ZH = HZ. This 
is the weak direct product if, and only if, Z = Z, i.e. when 2 itself is a subgroup. 

Using these preliminary considerations, one can prove the following theorem. 
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Theorem 3. Let D(G)  be a unitary representation of the group G. 

M Damnjanovid and I MiloSeviC 

(i) If Y-’ g{y-’ ly  E Y )  then (Y - ’ ) (D)  = Y + ( D ) .  
(ii) For a closed subset Y (i.e. YY = Y) in G ,  Y ( D )  is idempotent, Y 2 ( D )  = Y ( D ) .  
(iii) If H and K are subgroups of G,  then ( H K ) ( D )  = H ( D ) K ( D )  and this is 

the projector if HK = KH is also a subgroup; in particular, when G is the product 
of its subgroups H and K, then G ( D )  is factorized into subgroup projectors: G ( D )  = 
H ( D ) K ( D ) .  
- (iv) If H is a subgroup of G with the left transversal Z then G ( D )  = Z ( D ) H ( D )  = 
Z ( D ) H ( D ) .  

The first two statements follow directly from the unitarity of D(G)  and the definition 
of Y ( D ) .  To prove the third part-note that if hi and kj are the left and right coset 
representatives of L in H and K, respectively, i.e. H = UihiL and K = U j L k j - a l l  the 
pairs h , k  such that g = hk (for given g E HK) belong to the same cosets of L in H 
and K, respectively. Indeed, if g = hk = h’k’ with h = hilh, h’ = hi&,, k = lkk, and 
k’ = lpkjt, it follows from hk = h‘k’ that h;’hi(h,lk) = (lh,lk,)$k;’ and i‘ = i, j = j‘  and 
l h l k  = lhdp = 1. Once the transversals (h i )  and ( k j )  are chosen, the elements of HK are 
uniquely factorized in the form g = hilkj. 1 E L = H n K. So, the orders of the mentioned 
subsets are related by IGI = l H [ [ K [ / l L l .  The product of the subgroup projectors, when 
h = hi1 and k = l’kj are substituted, becomes 

1 1 
H ( D ) K ( D )  = - D(hk)  = - D ( h i )  D(lI’)C D(kj) = ( H K ) ( D ) .  

IHllKl h,k IHllKl i 1.1‘ i 

HK is a subgroup if, and only if, HK = KH which implies that H ( D )  and K ( D )  
commute and ensures that ( H K ) ( D )  is again a projector. The last part is obtained when in 
G ( D )  = l/(lZllHl) D(z , )D(h)  the summation over H is performed giving the sum 
of the transversal representatives multiplied by H ( D ) .  

Applied to the results of the preceding sections, this theorem enables us to reduce 
the group-projector technique to some subgroup and its transversal: for any irreducible 
component D@)(C)  of D(C) the representation D(@)*(G) 63 D(G) is constructed and the 
relevant group projector factorized: G(D@)* 63 D )  = Z(Dc@)* @ D)H(D@)* 63 D). Both 
factors are projectors, particularly for the product groups. Afterwards, the determination of 
the standard basis is prescribed by theorem 2. 

4. Projectors of the cyclic groups 

All the operators of the representation D(G)  of a cyclic group G with generator g are 
powers of D(g) .  Hence, there exists a unitary operator U such that UD(g)U-I is the 
diagonal matrix with eigenvalues e”, (s = 1,. . . ,d ;  d is the dimension of D(G))  on 
the diagonal. The corresponding eigenspaces are the irreducible invariant subspaces for 
D(G)  and the irreducible subrepresentations (always one dimensional) are generated by the 
eigenvalues. g‘ is represented by a phase factor D@)(g’) = e‘#*’ particularly within an 
irreducible representation. 

Therefore, the group projector P(”(D, G) = G(D‘”* 63 D )  takes the form 
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The non-vanishing sums are for k,, = k,, being equal to 1. In other words, R is the 
eigenspace of D ( g )  for the eigenvalue D @ ) ( g )  and instead of the summation over the 
group, only the eigenprojector of D(&)*(g) @ D ( g )  for the eigenvalue 1 is to be calculated. 
This also remains true for the infinite cyclic groups when direct summation is not possible 
and this fact can be exploited in the related computational methods. 

The generality of the presented considerations becomes clear when it is realized that, 
besides the finite groups, most of the discrete groups applied in physics can be factorized 
as the product of the cycles of their generators. For example, all the crystallographic point 
groups are products of cyclic groups (Altmann 1977, p 268) and the l i e  groups are of the 
form L = ZP where 2 is a cyclic infinite group and P is one of the axial point groups which 
are themselves products of the cyclic groups (DamnjanoviE 1981). In all these cases the 
group projectors can be found by solving the eigenproblems for the generators. As for the 
space groups, the translational subgroup is the direct product of three infinite cyclic groups 
(the subgroup projector is to be within three eigenvalue problems) while the transversal is 
finite, making the last part of theorem 3 applicable. In addition, it should be mentioned that 
when H is the invariant subgroup, since it is the translational subgroup, Z(D) commutes 
with H ( D ) .  

5. Discussion 

The group-operator technique is reduced to the group projectors G(D(J’)* @ D) of the 
identity representation. It appears that the vectors in the range of this projector, i.e. the 
fixed points of the operators of D@)*(G) c3 D(G) are those coupling the corresponding 
vectors of the standard bases for D@’)(G) and D(G) .  This provides an algorithm for 
constructing the standard basis of D(G):  for each irreducible subrepresentation D(”)(G),  
the projector G(D(@*) @ D) should be found together with an orthonormal basis in its range. 
For each vector of this basis, partial scalar products with the known standard basis for 
D w ) ( G )  (usually the absolute basis) give the standard basis for D(G) .  Note that the order 
in the direct product is unimportant; the whole method can be worked out with the choice 
G ( D  @ D@*)). 

In this form, the group-projector technique does not involve any isolated matrix elements 
but only the whole matrices of the related representations. Essentially, this has been 
exploited to show that in the most general case of the group factorizing into subgroups 
G = Hi Hz . . . (with no restriction on their intersection) and their factor groups, the projector 
G(D@)* @ D) is the product of the corresponding projectors Hj(D@)* @ D) of subduced 
(or restricted) representations to the subgroups. Moreover, for the groups factorizable in 
this sense into the cycles of the generators, it turns out that the whole problem is equivalent 
to the determination of the eigenspaces for the eigenvalue 1 for the operators representing 
generators of G in D(”)*(G) c3 D(G) ,  even in the case of infinite discrete groups. In this 
sense the proposed scheme generalizes the subgroup method used in the solid-state physics. 

The structural conditions required in the theorems are weak enough such that the results 
refer to all the discrete groups relevant in physics. This offers the opportunity to apply 
the technique in the calculations with obvious advantage when infinite groups are involved. 
Due to the relation ap = TrG(D(”Y @ D), it may be preferable to calculate even the 
frequencies of the irreducible representations by this technique. It should be mentioned that 
these results have already been implemented in the computer program POLSym, employing 
the line groups in polymer physics (MiloSeviE and Damnjanovii 1992). 

The same concept can obviously be extended to compact factorizable Lie groups in 
which the usual group-projector method is based on the bi-invariant measure. While the 
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structural considerations remain the same, the appropriate elements of the Lie algebra and 
the null-spaces of the operators representing them should be used instead of the generators 
of the discrete groups and the eigenspaces for the eigenvalue 1. The connection of this 
approach with Cartan's seems to be an interesting question but far beyond the scope of this 

Some other related problems should be mentioned in this context. The first of these is 
a prescription for calculating the Clebsch-Gordan coefficients. If, in the direct product of 
two irreducible representations D@)(G)  and D(")(G),  the irreducible component @(G) 
occurs once then the Clebsch-Gordan coefficients are the scalar products (pmun I puhl) 
of the standard basis [puhl) (in the product space) with the vectors Ipmun) = Ipm) @ Iun) 
of the product of the standard bases (in the factor spaces). In view of section 2, the range 
of the projector G(D(A)' 0 D(") 0 D(")) is one dimensional and for a chosen normalized 
vector Ipuh) the standard basis is Ipuhl) = (h'l I pwh) (partial scalar product). Therefore, 
the Clebsch-Gordan coefficients can be calculated as (pmun I p u l l )  = {p~mvnl{h*lIpui.). 
Assuming that all the bases involved (Ipm), Iun) and Ih'l)) are absolute, it turns out that 
the Clebsch-Gordan coefficients are just the coordinates of [puh).  

It is well known that there is a standard eigenbasis of the Hermitian operator H 
commuting with the representation D(G). In fact, the group operators commute with H 
also and the ranges of the projectors P/Y)(D, G) are invariant for H. This enables us to 
solve the eigenvalue problem separately in the ranges of P$)(D,  G) for each p and to 
reveal the other symmetry-adapted eigenvectors through the use of the group operators. In 
the proposed scheme, the role of H is taken by the operator I O  H commuting with the 
representation D(*l'(G) @ D(G).  The subspace R is invariant for this operator and by 
solving the eigenproblems in these subspaces (for each p )  we obtain the basis in R. This is 
the basis Iplt;) used in theorem 2; it is easy to verify that the standard basis of the original 
space derived in the theorem is an eigenbasis of H. 

At the end of the paper the concepts introduced are illustrated by an example concerning 
the line groups (MiloSeviC and DamnjanoviC 1993). The group L = L(Zn).mc is the 
weak direct product L = ZP of the infinite cyclic group of the screw axis Z = ( 2 4 ,  = 
[ ( C a l ~ ) ' l t = O  ,~I . . .}andthepointgroup P=C., ={u{Ci l j  =O,I ; s=O ,..., n-I]. 
The Clebsch-Gordan series of the square of the irreducible two-dimensional representation 
E = k E m , - m f o r m # i i s E Z =  E'+A+Bwith E f = ~ E 2 m , - ~ , A = ~ A ~ a n d B = 2 k B ~  
(Damnjanovit et a1 1983). The scheme presented in the paper will be applied to find the 
Clebsch-Gordan coefficients. The factorized projector L(D')  = Z(D')P(D') is used with 
D' being DL = E" O E', D i  = A* 0 E' and Dk = B' 0 E'. While the subgroup 
projector of C,, is found by the standard technique, the other factor is constructed as the 
eigenprojector for the eigenvalue 1 of the operator D'(Cal& thus avoiding the infinite 
summation. 

M Damnjanovii and I MiloSeviC 

paper. 

The representative matrices are (or = 2rr/n) 
E((C ,J$ ) :~ ;C; )  = eWl diag(@W2, e-im@)Mi ,jiag(eimsu, e-imsa) 

I t  j 7 j ikr/Z A((C2aI+)fu/Ci) = eik'/* B ( ( C Z J ~ )  uuCn) = (-1) e 
and 
E'((C~1~)'u~C~) = eik diag(eimtu, 1, 1, e-imra)Mi diag(e2""a , I ,  1,  e-zmsu) 

where M. is the n-dimensional off-diagonal matrix 

Mn = (0 ;:: 1 ) ,  
1 ... 0 
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The representations D' of the subgroup C,, can be found by substituting f = 0 

9 1) 
Dk(,,jc-..) = Mi diag(l, e-Z~mru, e-2imra e-4imro e4imrar e2im.wt e2imsn 

D>(uiC;) = xE:,-,(r~iC;) and DL ( u ~ C ; )  = ( - l ) ' ~ E ~ ~ - m ( ~ ~ C ~ ) .  

The subgroup projectors P(D')  = (1/2n) E:=, D'(uiCi) are 

1 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  / 0 0 0 0 0 0 0 0  

\ 1 0 0 0 0 0 0 1  

As for the generator (Ck];), the representative matrices are 

D ~ (  1') - diag(l, e-imer, e-ima e-2ima e2imn , e  imu ,eimm, 1) ' c,, - 

D>(C%l&) = DL(Clnl$) = diag(e"', 1, l,e-imo). 

Consequently, the projectors Z(D') ,  being the eigenprojectors of these matrices are 
Z(DL) = diag(1, O,O, O,O,  O,O,  1) and Z(D;) = Z ( D L )  = diag(0, 1,1,0). 

Finally, the projectors for the whole line group L(Zn),mc are the products of the 
corresponding factor-projectors 

1 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

L(Dk)=f  I 1 0 0 0 0 0 0 1 .  
while L(D; )  and L ( D L )  are equal to those found for the subgroup Cnv. The eigenvectors 
in the ranges of these projectors are: IEEE') = (l,O,O.O,O,O, 0, for D k ,  IEEA) = 
(1/&)(0,1,1,0)* for Da and I E E B )  = (l/&)(O, 1, -l,O)T for DL. 

It remains to find the standard basis and the Clebsch-Gordan coefficients. Denoting 
the absolute bases in the irreducible representative spaces by {/El),  IEZ)}, {IE'I) ,  IE'Z)}, 
{IAl)}, { I B l ) ) ,  the coefficients are the coordinates of the found vectors IEEE'), IEEA) 
and IEEB).  The non-vanishing ones are 

(ElE1 I EEE'l) = (E2E2 I EEE'2) = 1 

( E M 2  I EEA1) = (E2E1 1 E E A 1 )  = l /& 

( E l E 2  I EEB1) = -(E2E1 I EEBl )  = I/&. 
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